Mancia

Residencias Médicas en Argentina

Residencias Médicas en el Mundo

Diario de la Salud

Materias Basicas de Salud

Materias Clínicas

México

Universidades

Hospitales

Carreras de la Salud

Tecnicaturas

Clasificados & Insumos

Trabajo

Café Mancia

Foro/ Diario de la Salud/ Noticias/

Primera vacuna terapéutica contra el cáncer

Primera vacuna terapéutica contra el cáncer

  1. Avatar de Noticias
    1,097
    Posts
    1,002
    Agradecimientos
    recibidos
    #1

    Primera vacuna terapéutica contra el cáncer

    Por ahora se aplica sólo para los casos de próstata. Extiende tres veces la sobrevida.

    En la carrera por la innovación en nuevas terapias para ganarle el cáncer, un grupo de especialistas estadounidenses se anotó el gran mérito de haber sido los primeros en lograr una vacuna terapéutica para la enfermedad. La droga se llama sipuleucel-T , acaba de ser aprobada por la FDA, la agencia que regula alimentos y fármacos en Estados Unidos, y ya empezó a aplicarse en ese país exclusivamente para casos de cáncer de próstata metastásico.

    Hoy existe una sola vacuna para el cáncer y es preventiva : se trata de la del Virus de Papiloma Humano, que previene las lesiones en el cáncer de cuello de útero que pueden derivar en un tumor maligno. El desarrollo logrado ahora es innovador, ya que la vacuna no evita la enfermedad sino que actúa sobre la respuesta inmune del organismo para que sea el propio cuerpo quien se defienda .
    “Esta es la primera terapia autóloga celular y representa un avance científico y clínico significativo para el cáncer de próstata. Estas inmunoterapias que usan el propio sistema inmune del paciente van a crear un nuevo paradigma de tratamiento”, vaticinó Philip Kantoff, jefe de investigación clínica del Instituto de Cáncer Dana-Farber y profesor de Medicina en Harvard.

    El nombre comercial de la vacuna es Provenge. Su investigación llevó 15 años y se desarrolló para cáncer de próstata, el segundo más frecuente entre los hombres . Su producción y su mecanismo de acción es complejo. Se sacan células tumorales y se realiza un procedimiento en el laboratorio que aumenta la posibilidad de desencadenar una respuesta inmune (ver infografía). “El cuerpo tolera muy bien la vacuna. Y los efectos secundarios, como fiebre y resfríos, fueron mínimos”, señaló Daniel Petrylak, oncólogo del Centro Médico de la Universidad de Columbia, que estuvo presentando ayer los resultados de las pruebas con Provenge –que produce el laboratorio Dendreon– en el Congreso de la Sociedad Americana de Oncología Clínica (ASCO), en Chicago.

    Estos estudios, en los que se basó la FDA para aprobar la vacuna el 29 de abril, dieron cuenta de un aumento en la sobrevida de los pacientes que recibieron la medicación. “El porcentaje de supervivencia de los pacientes tratados con Provenge fue tres veces mayor que en el grupo de control”, amplió Petrylak. El experto también adelantó que si bien hasta ahora la vacuna apunta a un único marcador en las células de cáncer prostático, se están realizando investigaciones para extender su uso a otros tumores , como el de mama.

    Sin embargo, Provenge tiene un gran punto en contra: su costo . Si bien el laboratorio no quiso confirmar cuánto cuesta el tratamiento, fuentes médicas lo calcularon en 90 mil dólares . Y se aplica sólo en algunos centros médicos de Estados Unidos: al paciente se le extraen las células, que se envían a un laboratorio especial donde se prepara la vacuna, que se le aplica en tres infusiones intravenosas con dos semanas de separación entre cada una. Así, es un verdadero tratamiento “a medida” , diseñado según cada paciente.

    “Todo el tiempo nuestro organismo está produciendo células tumorales, pero nuestro sistema inmunológico se encarga de destruirlas. A través de determinados antígenos, se logra que cuando hay un tumor estas estructuras se hagan reconocibles y el sistema inmune actúe atacándolas”, graficó el argentino Enrique Díaz Cantón, oncólogo del CEMIC y de Fundaleu. Y destacó que esta vacuna es una de las novedades más significativas de este ASCO en cuanto a inmunoterapia.

    Fuente:
    Presentaron en EE.UU. la primera vacuna terapéutica contra el cáncer
  2. Avatar de Dedos Addams
    1,620
    Posts
    1,089
    Agradecimientos
    recibidos
    #2
    La mente humana, UNICA dentro de los seres vivos, al mismo tiempo puede ser tan brillante como un rayo y oscura como la noche.


    90.000 dolares....
  3. Médico Genetista
    Avatar de Boris Groisman
    1,457
    Posts
    627
    Agradecimientos
    recibidos
    #3
    Carísimo, sin duda, y probablemente solo accesible a algunos pocos. En esos 90.000US$ está el controversial costo de innovación que implica el desarrollo de nuevos fármacos.

    Pharmaceutical industry - Wikipedia, the free encyclopedia

    The cost of innovation

    Drug discovery and development is very expensive; of all compounds investigated for use in humans only a small fraction are eventually approved in most nations by government appointed medical institutions or boards, who have to approve new drugs before they can be marketed in those countries. Each year, only about 25 truly novel drugs (New chemical entities) are approved for marketing. This approval comes only after heavy investment in pre-clinical development and clinical trials, as well as a commitment to ongoing safety monitoring. Drugs which fail part-way through this process often incur large costs, while generating no revenue in return. If the cost of these failed drugs is taken into account, the cost of developing a successful new drug (New chemical entity or NCE), has been estimated at about 1 billion USD[4](not including marketing expenses). A study by the consulting firm Bain & Company reported that the cost for discovering, developing and launching (which factored in marketing and other business expenses) a new drug (along with the prospective drugs that fail) rose over a five year period to nearly $1.7 billion in 2003.[5]

    These estimates also take into account the opportunity cost of investing capital many years before revenues are realized (see Time-value of money). Because of the very long time needed for discovery, development, and approval of pharmaceuticals, these costs can accumulate to nearly half the total expense. Some approved drugs, such as those based on re-formulation of an existing active ingredient (also referred to as Line-extensions) are much less expensive to develop.

    Calculations and claims in this area are controversial because of the implications for regulation and subsidization of the industry through federally funded research grants.

    Citar Originalmente publicado por Dedos Addams Ver post
    La mente humana, UNICA dentro de los seres vivos, al mismo tiempo puede ser tan brillante como un rayo y oscura como la noche.


    90.000 dolares....
  4. Médico Residente Psiquiatra
    48
    Posts
    6
    Agradecimientos
    recibidos
    #4
    No hay alguna forma de conseguirla a un precio mas bajo?!!! Mi papa la necesita!!!
  5. 5
    Posts
    0
    Agradecimientos
    recibidos
    #5
    90mil dolares! :|
  6. 5
    Posts
    0
    Agradecimientos
    recibidos
    #6
    o sea me parece que no es accesible para muchisima gente-
  7. Avatar de Ragamuffin
    1,433
    Posts
    378
    Agradecimientos
    recibidos
    #7
    Es una vacuna custom segun el articulo no? Con mis propias celulas, generan la accion defensiva...

    Interesante va a ser cuando toda esa guita que cobran, se use para dominar mejor el sistema inmune mas alla del cancer. Me encantaria que el dia de mañana este avance de pie a modificaciones que permitan mantener el cuerpo lo mas sano posible con tratamiento excesivamente especifico a cada paciente... Imaginen el efecto positivo frente a infecciones intrahospitalarias nomas y no imaginen el costo

  8. Médico Genetista
    Avatar de Boris Groisman
    1,457
    Posts
    627
    Agradecimientos
    recibidos
    #8
    Según lo que dice el artículo:

    se aplica sólo en algunos centros médicos de Estados Unidos
    Lo mejor sería que consulte a su médico tratante para ampliar información sobre el tema

    Citar Originalmente publicado por JULIETAMARIA9 Ver post
    No hay alguna forma de conseguirla a un precio mas bajo?!!! Mi papa la necesita!!!
  9. Avatar de Dedos Addams
    1,620
    Posts
    1,089
    Agradecimientos
    recibidos
    #9
    La verdad que me quede pensando, como sera el proceso, porque como hacen que el sistema inmune reaccione frente a algo que hasta ese momento no pudo detectar como extraño?


    Dr Boris, tal vez nos pueda guiar hacia lecturas apasionantes? o tal vez alguna explicacion desde su especialidad?


    Saludos.
  10. Avatar de ZeKKi
    6,769
    Posts
    1,598
    Agradecimientos
    recibidos
    #10
    90.000 dólares es seguro el precio actual por ser un sistema innovador, que como indica el extracto de wikipedia que compartió Boris, deben tener, estos costos, relación directa con el método de realización de la vacuna, donde su fabricación es personalizada, como sabemos de la teoría de la fábrica fordistas, la masificación disminuye costos, por ahora estamos en un punto opuesto. No sería descabellado esperar que a futuro que, con un mayor desarrollo tecnológico y financiero sobre el tema pueda mejorarse el proceso de fabricación y reducir los costos de la misma.

    RECORDEMOS que la mayor ganancia no se logra vendiendo unos pocos miles de productos a miles de dólares, sino millones de productos a unos cientos de dólares.
    See one, Do one, Teach one.
  11. Médico Genetista
    Avatar de Boris Groisman
    1,457
    Posts
    627
    Agradecimientos
    recibidos
    #11
    National Cancer Institute - Comprehensive Cancer Information es una excelente fuente de información sobre cáncer para profesionales y médicos.

    En cuanto a este tema encontré esta información para pacientes (Cancer Vaccines - National Cancer Institute ):


    1. How do cancer treatment vaccines work? Cancer treatment vaccines are designed to treat cancers that have already occurred. They are intended to delay or stop cancer cell growth; cause tumor shrinkage; prevent cancer from coming back; or eliminate cancer cells that are not killed by other forms of treatment, such as surgery, radiation therapy, or chemotherapy.
      Developing effective cancer treatment vaccines requires a detailed understanding of how immune system cells and cancer cells interact. The immune system often does not “see” cancer cells as dangerous or foreign, as it generally does with microbes. Therefore, the immune system does not mount a strong attack against the cancer cells.
      There are many reasons the immune system does not easily recognize the threat posed by an already growing cancer. Most important is the fact that cancer cells carry normal self antigens in addition to any cancer-associated antigens. Furthermore, cancer cells sometimes undergo genetic changes that lead to the loss of cancer-associated antigens. Finally, cancer cells can produce chemical messages that suppress specific anticancer immune responses by killer T cells. As a result, even when the immune system recognizes a growing cancer as a threat, the cancer may still escape a strong attack by the immune system (16).
    2. What types of vaccines are being studied in clinical trials? Vaccines to prevent HPV infection and to treat several types of cancer are being studied in clinical trials.
      The list below shows the types of cancer that are being targeted in active cancer prevention or treatment clinical trials using vaccines. In the HTML version of this fact sheet on the Web site (http://www.cancer.gov/cancertopics/f...ancer-vaccines), the cancer names are links to search results for cancer vaccine trials in the National Cancer Institute’s (NCI) clinical trials database. This database can also be searched on NCI’s Web site, http://www.cancer.gov, by visiting http://www.cancer.gov/clinicaltrials/search on the Internet.

      Active Clinical Trials of Cancer Treatment Vaccines by Type of Cancer:



      Active Clinical Trials of Cancer Preventive Vaccines by Type of Cancer:

    3. How are cancer vaccines made, and what antigens are used? Scientists make cancer preventive vaccines using antigens from microbes that cause or contribute to the development of cancer. The cancer preventive vaccines currently approved by the FDA are made using antigens from HBV and specific types of HPV (see Question 5). These antigens are proteins that help make up the outer surface of the viruses. Because only part of these microbes is used, the resulting vaccines are not infectious and, therefore, cannot cause disease.
      Researchers can also create synthetic versions of antigens in the laboratory for use in vaccines. In doing this, they often modify the chemical structure of the antigens to stimulate immune responses that are stronger than those caused by the original antigens.
      Similar to cancer preventive vaccines, cancer treatment vaccines can be made using antigens from cancer cells—either directly or by making modified versions of them. Antigens that have been used thus far include proteins; carbohydrates (sugars); glycoproteins or glycopeptides, which are carbohydrate-protein combinations; and gangliosides, which are carbohydrate-lipid (fat) combinations.
      Cancer treatment vaccines can also be made using weakened or killed cancer cells that carry a specific cancer-associated antigen. These cells can be from a patient’s own cancer (called an autologous vaccine) or from another person’s cancer (called an allogeneic vaccine).
      Other types of cancer treatment vaccines can be made using molecules of deoxyribonucleic acid (DNA) or ribonucleic acid (RNA) that contain the genetic instructions for cancer-associated antigens. The DNA or RNA can be injected alone into a patient as a “naked nucleic acid” vaccine, or researchers can insert the DNA or RNA into a harmless virus. After the naked nucleic acid or virus is injected into the body, the DNA or RNA is taken up by cells, which begin to manufacture the tumor-associated antigens. Researchers hope that the cells will make enough of the tumor-associated antigens to stimulate a strong immune response.
      Scientists have identified a large number of cancer-associated antigens, several of which are now being used to make experimental cancer treatment vaccines. Some of these antigens are found on or in many or most types of cancer cells. Others are unique to specific cancer types (1, 5, 6, 20–25).
      Antigens associated with more than one type of cancer include the following:

      • Carcinoembryonic antigen (CEA): A glycoprotein found in developing fetal tissues and in certain types of cancer, including colorectal cancer, stomach cancer, pancreatic cancer, breast cancer, and non-small cell lung cancer.
      • Cancer/testis antigens, such as NY-ESO-1: A large family of proteins found in male germ cells (sperm) and a wide variety of cancer types, including melanoma and cancers of the ovary, tongue, pharynx, brain, lung, colon, and breast.
      • Mucin-1 (MUC1): A glycoprotein found in the outer membrane of mucus-producing epithelial cells (cells that make up the skin and line internal organs) and many types of cancer cells, including breast, prostate, colon, pancreatic, and non-small cell lung cancer cells. Sialyl Tn (STn) is a carbohydrate antigen related to mucin-1 that is being used in some treatment vaccines.
      • Gangliosides, such as GM3 and GD2: Molecules that are found in the outer membrane of several types of cancer cells, including melanoma, neuroblastoma, small cell lung cancer, and soft tissue sarcomas.
      • p53 protein: A protein produced by the tumor suppressor gene TP53. Mutation of TP53, which results in a loss of p53 protein function, is the most common abnormality in human cancer. Mutant p53 protein often accumulates in cancer cells, which makes p53 an attractive target for a vaccine.
      • HER2/neu protein (also known as ERBB2): A protein that is overexpressed—or overproduced—in breast, ovarian, and several other types of cancer. Overexpression of HER2/neu is associated with more aggressive disease and a worse outcome. Targeting HER2/neu with a monoclonal antibody called trastuzumab (Herceptin®) has proven to be an effective treatment for breast cancers that overexpress this protein.

      Antigens unique to a specific type of cancer include the following:

      • A mutant form of the epidermal growth factor receptor, called EGFRvIII: An abnormal protein that contributes to uncontrolled tumor growth and is found in glioblastoma (a type of brain cancer), but not in normal brain tissue.
      • Melanocyte/melanoma differentiation antigens, such as tyrosinase, MART1, and gp100: Proteins found in mature melanocytes (pigment-producing cells of the skin and eye) and in melanoma cells.
      • Prostate-specific antigen (PSA): A protein that is often produced in much greater amounts by prostate cancer cells than by normal prostate cells.
      • Idiotype (Id) antibodies: Antibodies produced by cancerous B cells that serve as antigen markers for diseases such as multiple myeloma and several types of lymphoma. Id antibodies are unique to an individual patient's cancer.

    4. Are other substances used to make cancer treatment vaccines? Yes. Researchers can use certain immune system cells and their products, as well as antibodies created in the laboratory, to make cancer treatment vaccines.
      Some examples include the following:

      • Dendritic Cells and Costimulatory Molecules: Scientists can use a type of white blood cell known as a dendritic cell to make cancer treatment vaccines. Dendritic cells are powerful stimulators of immune responses. They process and present cancer-associated antigens to T cells and B cells, and they produce costimulatory molecules that enhance the cell-killing properties of killer T cells (1, 2, 23–26). To make autologous dendritic-cell vaccines, researchers often harvest dendritic cells from the blood of a cancer patient and grow the cells in the laboratory while “feeding” them cancer-associated antigens. Dendritic cells can be fed antigens directly, or they can be exposed to DNA, RNA, or viruses that contain the genetic instructions for the antigens. After taking up the DNA, RNA, or virus genetic material, the dendritic cells manufacture and process the antigens for display on their cell surface to other immune system cells. Researchers then inject these “antigen-presenting cells” into the patient’s bloodstream. In the body, the dendritic cells interact with killer T cells and other immune system cells to generate anticancer immune responses.
        Researchers can also create synthetic versions of the costimulatory molecules produced by dendritic cells and add them to other types of treatment vaccines to strengthen killer-T-cell responses. Costimulatory molecules that are frequently used in treatment vaccines include ICAM–1, B7.1, and LFA–3. When used together in a vaccine, these three molecules are designated by the abbreviation TRICOM (22, 27).
      • Idiotype (Id) Vaccines: Normal B cells and cancerous B cells, such as those produced in multiple myeloma and several types of lymphoma, each make only one type of antibody. In a patient with a B cell cancer, these unique antibodies, also called idiotype (Id) antibodies, can serve as antigen markers for the patient’s disease. Id antibodies can also be used to create personalized, autologous vaccines (28). When injected into a patient in large amounts, Id antibodies may be able to stimulate an immune response that will target cancerous B cells for destruction. Autologous Id vaccines typically include other substances called adjuvants, which increase the potency of immune responses (see Question 12). Id antibodies can also be used as antigens in making autologous dendritic-cell vaccines.
      • Anti-Idiotype (Anti-Id) Monoclonal Antibody Vaccines: Monoclonal antibodies are substances created in the laboratory; each type of monoclonal antibody targets one specific antigen. Anti-Id antibodies have been developed that mimic antigens found on several types of cancer cells. These antibodies can trigger immune responses against cancer cells that bear the antigens that the anti-Id antibodies mimic. Cancer types for which anti-Id monoclonal antibodies have been developed include melanoma, breast cancer, small cell lung cancer, colorectal cancer, ovarian cancer, peritoneal cancer, and cancer of the fallopian tube.





    Citar Originalmente publicado por Dedos Addams Ver post
    La verdad que me quede pensando, como sera el proceso, porque como hacen que el sistema inmune reaccione frente a algo que hasta ese momento no pudo detectar como extraño?


    Dr Boris, tal vez nos pueda guiar hacia lecturas apasionantes? o tal vez alguna explicacion desde su especialidad?


    Saludos.
    Editado por Boris Groisman en 10-Jun-2010 a las 10:57 PM
  12. 1
    Posts
    0
    Agradecimientos
    recibidos
    #12

    Acoescan

    Amigos y amigas,
    Según el acuerdo de colaboración suscrito entre el grupo de empresas Ecuanima y la Universidad Manuela Beltrán UMB y anticipándonos al calendario previsto, os informamos que ya se encuentran activados los servicios que mediante la asociación-fundación sin ánimo de lucro ACOESCAN ponemos al alcance de las personas que lo deseen con el objetivo de beneficiarse de los importantes éxitos que el tratamiento contra el cáncer mediante la
    “ Vacuna Biológica Autóloga CIMT-54 “ el grupo de investigadores SAPIENTIA de la UMB ha desarrollado.
    Podréis encontrar toda la información al respecto en :
    www.acoescan.org
    www.centroinvestigacioncancerumb.com
    Un cordial saludo a todos.
    José Acevedo

Discusiones similares

  • Tema
  • Iniciado por
  • Foro
  • Respuestas
  • Último post
  1. Noticias
    Noticias
    0
    04-Jun-2010 03:03
  2. meliii
    INCLASIFICABLES
    7
    29-Sep-2009 14:54
  3. akelbetz
    Noticias
    0
    17-Feb-2009 00:06
  4. Noticias
    Noticias
    7
    02-Feb-2009 23:18
  5. laly
    Prevención en Salud
    47
    23-Nov-2008 19:32
Ranking de temas y usuarios de este foro
  • Temas populares
  • Temas populares

Content Relevant URLs by vBSEO